$('[data-toggle="tooltip"]').tooltip({placement:"bottom",delay:{show:0, hide:0}}); });

Aerial photo of Greene Ridge, Antarctica

Received-Level Radius Calculator
(No Longer Available)

The Received-Level Radius Calculator is no longer offered on this site.

Here is some general information about sound propagation calculation:

Sound-exposure regulations for aquatic wildlife frequently cite specific sound thresholds of concern. Regions exposed by human activity to sound levels above these thresholds may require mitigation. 

When calculating the radius, you must have an estimate of the received level at a known range from the source (for a source level, use the default range of 1 meter). You must also characterize the transmission loss (TL)

TL = B*log10(R) + C*R

by identifying B, the logarithmic (predominantly spreading) loss, and C, the linear (scattering and absorption) loss, where R is range from the source in meters.

Transmission-loss parameters vary with frequency, temperature, sea conditions, source depth, receiver depth, water depth, water chemistry, and bottom composition and topography. Logarithmic loss B is typically between 10 dB (cylindrical spreading) and 20 dB (spherical spreading) although in some circumstances it can rise to 40 dB. Linear loss C has several physical components, including absorption in seawater, absorption in the sub-bottom, scattering from inhomogeneities in the water column and from surface and bottom roughness, and (for RMS levels of transient pulses) temporal pulse-spreading. For frequencies below 3.5 kHz in very deep water, C may be below 0.0001; in very shallow water, however, C may be 0.01 or more. Typical values may be B=15 and C=0.003. See how changing these parameters changes the radii. 

If you are using B and C values gained from a simple least-squares regression to experimental data, these parameters may provide a numerical fit to the original results but may not have any physical interpretation in terms of spreading or absorption. Extrapolate using such parameters only with extreme care. For example, one regression on airgun sounds measured at 100 to 1500 m range yielded B=4.4 and C=0.02. Such a small B and such a large C are atypical of physical parameters and instead probably reflect mathematical optimization by the physics-blind regression algorithm. We would not use these parameters to predict received levels outside the 100-1500 m range covered by the regression. 

Greeneridge Logo
Santa Barbara, California
90 Arnold Place, Suite D
Santa Barbara, CA 93117 USA
Tel: 805.967.7720
LGL Logo

LGL is an employee-owned group of companies, including Greeneridge Sciences, performing environmental research and consulting in the U.S.A, Canada, and internationally.

Corporate Offices

CANADA

KING CITY - ONTARIO
PO Box 280, 22 Fisher Street
King City, ON L7B 1A6 Canada
Tel: 905.833.1244

____________________________

U.S.A.

ANCHORAGE - ALASKA
2000 W International Airport Road, Suite C-1
Anchorage, AK 99502 USA
Tel: 907.562.3339

All LGL Locations